THE PSEUDO-QUASI-CONFORMAL CURVATURE TENSOR ON (LCS)n-MANIFOLDS
DOI10.17654/GT022010013zbMath1433.53050WikidataQ128475614 ScholiaQ128475614MaRDI QIDQ5215091
Rahuthanahalli Thimmegowda Naveen Kumar, Unnamed Author, V. Venkatesha
Publication date: 6 February 2020
Published in: JP Journal of Geometry and Topology (Search for Journal in Brave)
Einstein manifoldLorentzian metriclocally symmetriclocally \(\phi\)-symmetric\((\mathrm{LCS})_n\)-manifoldsthree-dimensional \(\phi\)-recurrent
Special Riemannian manifolds (Einstein, Sasakian, etc.) (53C25) Global Riemannian geometry, including pinching (53C20) General geometric structures on manifolds (almost complex, almost product structures, etc.) (53C15)
Cites Work
- On invariant submanifolds of (LCS)\(_{n}\)-manifolds
- Some transformations on \((LCS)_{n}\)-manifolds
- Certain results on \(K\)-paracontact and parasasakian manifolds
- SECOND ORDER PARALLEL TENSORS AND RICCI SOLITONS ON (LCS)n-MANIFOLDS
- SOME RESULTS ON (LCS)n-MANIFOLDS
- On φ-pseudo Symmetries of (LCS)n-Manifolds
- Some Symmetric Properties on (LCS)n-manifolds
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: THE PSEUDO-QUASI-CONFORMAL CURVATURE TENSOR ON (LCS)n-MANIFOLDS