Уравнения дуальности на 4-многообразии конформной связности без кручения и некоторые их решения для нулевой сигнатуры
DOI10.14498/vsgtu1674zbMath1449.53031OpenAlexW2966675124MaRDI QIDQ5216636
L. N. Krivonosov, V. A. Luk'yanov
Publication date: 18 February 2020
Published in: Вестник Самарского государственного технического университета. Серия «Физико-математические науки» (Search for Journal in Brave)
Full work available at URL: http://mathnet.ru/eng/vsgtu1674
torsioncurvatureself-dualityHodge operatorYang-Mills equationsanti-self-dualitymanifold of conformal connection
Applications of differential geometry to physics (53Z05) Linear and affine connections (53B05) Conformal structures on manifolds (53C18)
Related Items (1)
Cites Work
- Unnamed Item
- The main theorem for (anti-)self-dual conformal torsion-free connection on a four-dimensional manifold
- The asymptotic pseudoconformal structure on a four-dimensional hypersurface and its totally isotropic two-dimensional submanifolds
- On the Einstein-Weyl and conformal self-duality equations
- Self-duality in four-dimensional Riemannian geometry
- Some local aspects of the theory of conformal structure
- Уравнения Янга-Миллса на 4-многообразиях конформной связности без кручения с различными сигнатурами
- Structure of the Main Tensor of Conformally Connected Torsion Free Space. Conformal Connections on Hypersurfaces of Projective Space
This page was built for publication: Уравнения дуальности на 4-многообразии конформной связности без кручения и некоторые их решения для нулевой сигнатуры