Local average in hyperbolic lattice point counting, with an appendix by Niko Laaksonen
From MaRDI portal
Publication:522046
DOI10.1007/s00209-016-1749-zzbMath1423.11104arXiv1408.5743OpenAlexW2531580604MaRDI QIDQ522046
Yiannis N. Petridis, Morten S. Risager
Publication date: 12 April 2017
Published in: Mathematische Zeitschrift (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1408.5743
Spectral theory; trace formulas (e.g., that of Selberg) (11F72) Relations between spectral theory and ergodic theory, e.g., quantum unique ergodicity (58J51)
Related Items
Mean square in the prime geodesic theorem, Sums of squares in real quadratic fields and Hilbert modular groups, Spectral exponential sums on hyperbolic surfaces, LOCAL AVERAGE OF THE HYPERBOLIC CIRCLE PROBLEM FOR FUCHSIAN GROUPS, The prime geodesic theorem in square mean, Bounds for a spectral exponential sum, Prime geodesic theorem for the Picard manifold, CM-points and lattice counting on arithmetic compact Riemann surfaces, Prime geodesic theorem in the 3-dimensional hyperbolic space, The prime geodesic theorem for \(\mathrm{PSL}2(\mathbb{Z}[i)\) and spectral exponential sums]
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Local analysis of Selberg's trace formula
- Quantum unique ergodicity for \(\text{SL}_2(\mathbb Z)\setminus \mathbb H\)
- Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen
- The Selberg trace formula for \(\text{PSL}(2,\mathbb R)\). Vol. 2
- The variance of the hyperbolic lattice point counting function
- On the rate of quantum ergodicity. I: Upper bounds
- The circle problem in the hyperbolic plane
- Formule de Poisson pour les variétés riemanniennes
- Quantum ergodicity of eigenfunctions on \(\text{PSL}_ 2(\mathbb{Z}) \backslash H^ 2\)
- The hyperbolic lattice point count in infinite volume with applications to sieves
- Invariant measures and arithmetic unique ergodicity. Appendix by E. Lindenstrauss and D. Rudolph
- New Lattice Point Asymptotics for Products of Upper Half-planes
- Prime geodesic theorem.
- Counting lattice points
- Effective computation of Maass cusp forms
- Gitterpunktprobleme in symmetrischen Riemannschen Räumen vom Rang 1
- A lattice‐point problem in hyperbolic space
- Exponential Sums and Lattice Points III
- Maaß cusp forms for large eigenvalues
- The prime geodesic theorem
- On the distribution of Farey fractions and hyperbolic lattice points