Periods of Hodge structures and special values of the gamma function
From MaRDI portal
Publication:522198
DOI10.1007/s00222-016-0690-4zbMath1395.14037arXiv1403.4105OpenAlexW1793809824MaRDI QIDQ522198
Publication date: 13 April 2017
Published in: Inventiones Mathematicae (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1403.4105
Riemann-Roch theorems (14C40) Fibrations, degenerations in algebraic geometry (14D06) Complex multiplication and abelian varieties (14K22) de Rham cohomology and algebraic geometry (14F40) Global ground fields in algebraic geometry (14G25)
Related Items
CM periods, CM regulators and hypergeometric functions. II ⋮ On genus one mirror symmetry in higher dimensions and the BCOV conjectures ⋮ Periods of Hodge structures and special values of the gamma function
Cites Work
- Periods of Hodge structures and special values of the gamma function
- On the periods of Abelian integrals and a formula of Chowla and Selberg. With an appendix by David E. Rohrlich
- Transcendental aspects of the Riemann-Hilbert correspondence
- Logarithmic de Rham complexes and vanishing theorems
- Automorphic forms and the periods of abelian varieties
- Periods of Hecke characters
- Gauss sums and the p-adic \(\Gamma\)-function
- Periods of abelian varieties with complex multiplication
- \(\varepsilon\)-factor of a tamely ramified sheaf on a variety
- On the periods of motives with complex multiplication and a conjecture of Gross-Deligne
- Monodromy of isolated singularities of hypersurfaces
- Théorie de Hodge. III
- Equations différentielles à points singuliers réguliers
- On the determinant of periods with finite monodromy.
- Higher algebraic K-theory: I
- Sur les Périodes des Intégrales Abéliennes
- Determinant of period integrals
- Hodge Theory of Cyclic Covers Branched over a Union of Hyperplanes
- Mixed Hodge Structures
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item