On the rational difference equation y n + 1 = α 0 y n + α 1 y n − p + α 2 y n − q + α 3 y n − r + α 4 y n − s β 0 y n + β 1 y n − p + β 2 y n − q + β 3 y n − r + β 4 y n − s
DOI10.22436/jnsa.011.01.07zbMath1438.39006OpenAlexW2776779891MaRDI QIDQ5225339
M. A. El-Moneam, Abdullah M. Alotaibi, Mohd. Salmi Md. Noorani
Publication date: 22 July 2019
Published in: Journal of Nonlinear Sciences and Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.22436/jnsa.011.01.07
Multiplicative and other generalized difference equations (39A20) Growth, boundedness, comparison of solutions to difference equations (39A22) Stability theory for difference equations (39A30)
Related Items (2)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On the rational recursive sequence \(X_{N+1}=\gamma X_{N-K}+(AX_N+BX_{N-K})/(CX_N-DX_{N-K})\)
- On the rational recursive sequence \(x_{n+1}=\frac{A+\alpha_0x_n+\alpha_1x_{n-\sigma}}{B+\beta_0x_n+\beta_1x_{n-\tau}}\)
- On the rational recursive sequence \(x_{n+1}=\frac {\alpha x_n+\beta x_{n-1}+\gamma x_{n-2}+\delta x_{n-3}} {Ax_b+ Bx_{n-1}+ Cx_{n-2}+ Dx_{n-3}}\)
- On the rational recursive sequence \(x_{n+1}=(A+\sum_{i=0}^{k}\alpha _{i}x_{n - i})/(B+\sum _{i=0}^{k}\beta _{i}x_{n - i})\)
- Dynamics of a higher order rational difference equation
- On the difference equation \(x_{n+1}=\frac{\alpha x_{n-1}+\beta x_{n-k}}{Ax_{n-1}+Bx_{n-k}}\)
- On the rational recursive sequence \(x_{n+1}=Ax_{n}+Bx_{n-k}+\frac{\beta x_{n}+\gamma x_{n-k}}{cx_{n}+Dx_{n-k}}\)
- On the rational recursive sequence \(x_{n+1}=\frac{\alpha + \beta x_{n-k}}{\gamma-x_{n}}\)
- Global attractivity and periodic character of difference equation of order four
- On the global attractivity of two nonlinear difference equations
- On the rational recursive two sequences \(x_{n+1}=ax_{n-k}+bx_{n-k}/(cx_n+\delta dx_{n-k})\)
- On the difference equation \(x_{n+1}=ax_n-bx_n/(cx_n-dx_{n-1})\)
- On the global attractivity and the periodic character of a recursive sequence
- On the rational recursive sequence $ x_{n+1}=\dfrac {\alpha_0x_n+\alpha_1x_{n-l}+\alpha _2x_{n-k}} {\beta_0x_n+\beta_1x_{n-l}+\beta_2x_{n-k}}$
- On the rational recursive sequence $ \ x_{n+1}=\Big ( A+\sum _{i=0}^k\alpha _ix_{n-i}\Big ) \Big / \sum _{i=0}^k\beta _ix_{n-i} $
- Dynamics of a rational difference equation
This page was built for publication: On the rational difference equation y n + 1 = α 0 y n + α 1 y n − p + α 2 y n − q + α 3 y n − r + α 4 y n − s β 0 y n + β 1 y n − p + β 2 y n − q + β 3 y n − r + β 4 y n − s