Conformal regular spacelike hypersurfaces in a conformal space \(\mathbb {Q}^{n+1}_1\)
From MaRDI portal
Publication:523118
DOI10.1007/s13398-016-0306-2zbMath1362.53031OpenAlexW2377753518MaRDI QIDQ523118
Publication date: 20 April 2017
Published in: Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A: Matemáticas. RACSAM (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s13398-016-0306-2
Minimal surfaces in differential geometry, surfaces with prescribed mean curvature (53A10) Differential geometry of immersions (minimal, prescribed curvature, tight, etc.) (53C42) Local submanifolds (53B25) Local Riemannian geometry (53B20)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Space-like isoparametric hypersurfaces in Lorentzian space forms
- Conformal isoparametric hypersurfaces with two distinct conformal principal curvatures in conformal space
- Moebius geometry of submanifolds in \(\mathbb{S}^n\)
- On closed hypersurfaces of constant scalar curvatures and mean curvatures in \(S^{n+1}\)
- Möbius isotropic submanifolds in \(\mathbb{S}^n\)
- Möbius isoparametric hypersurfaces in \(S^{n+1}\) with two distinct principal curvatures
- Conformal isoparametric spacelike hypersurfaces in conformal spaces \(\mathbb Q_1^4\) and \(\mathbb Q^5_1\)
- A classification of immersed hypersurfaces in spheres with parallel Blaschke tensors
- A conformal differential invariant and the conformal rigidity of hypersurfaces
- Minimal Hypersurfaces in a Riemannian Manifold of Constant Curvature
This page was built for publication: Conformal regular spacelike hypersurfaces in a conformal space \(\mathbb {Q}^{n+1}_1\)