Geometries induced by logarithmic oscillations as examples of Gromov hyperbolic spaces
DOI10.1007/s40840-017-0479-7zbMath1373.53056OpenAlexW2594613485MaRDI QIDQ523217
Wladimir G. Boskoff, Bogdan Dragos Suceavă
Publication date: 20 April 2017
Published in: Bulletin of the Malaysian Mathematical Sciences Society. Second Series (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s40840-017-0479-7
Hilbert distancechordal distanceGromov productBarbilian distanceGromov hyperbolic metricslogarithmic oscilationPoincaré distancestabilizing distanceVuorinen's metric
Metric spaces, metrizability (54E35) Metric geometry (51F99) Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces (53C23) General theory of distance geometry (51K05) Semimetric spaces (54E25)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Barbilian spaces: the history of a geometric idea
- Conformal invariants and quasiregular mappings
- Uniform domains and the quasi-hyperbolic metric
- The Hilbert metric and Gromov hyperbolicity.
- Hyperbolizing metric spaces
- Gromov hyperbolicity of the $j_G$ and ${\tilde \jmath }_G$ metrics
- Encyclopedia of Distances
This page was built for publication: Geometries induced by logarithmic oscillations as examples of Gromov hyperbolic spaces