The principle of duality in Euclidean and in absolute geometry
From MaRDI portal
Publication:523404
DOI10.1007/S00022-016-0314-6zbMath1372.51005OpenAlexW2297322919MaRDI QIDQ523404
Publication date: 20 April 2017
Published in: Journal of Geometry (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s00022-016-0314-6
Euclidean geometryabsolute geometryBachmann's metric planesco-Euclidean geometryGödel's completeness theoremprinciple of duality
Other geometric groups, including crystallographic groups (20H15) Absolute planes in metric geometry (51F05) Reflection groups, reflection geometries (51F15)
Related Items (2)
Cites Work
- An axiomatic foundation of Cayley-Klein geometries
- Non-euclidean geometries: the Cayley-Klein approach
- Die Dualität von Inzidenz und Senkrechtstehen in der absoluten Geometrie
- Worlds Out of Nothing
- DAVID HILBERT. David Hilbert's lectures on the foundations of geometry, 1891-1902. Michael Hallett and Ulrich Majer, eds. David Hilbert's Foundational Lectures; 1. Berlin: Springer-Verlag, 2004. ISBN 3-540-64373-7. Pp. xxviii + 661
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: The principle of duality in Euclidean and in absolute geometry