Bott–Taubes–Vassiliev cohomology classes by cut-and-paste topology
From MaRDI portal
Publication:5235026
DOI10.1142/S0129167X19500472zbMath1451.57008arXiv1512.06654OpenAlexW2963624613WikidataQ127597360 ScholiaQ127597360MaRDI QIDQ5235026
Publication date: 7 October 2019
Published in: International Journal of Mathematics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1512.06654
Feynman integrals and graphs; applications of algebraic topology and algebraic geometry (81Q30) Discriminantal varieties and configuration spaces in algebraic topology (55R80) Embeddings in differential topology (57R40) Knot theory (57K10) Higher-dimensional knots and links (57K45)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Homotopy Bott-Taubes integrals and the Taylor tower for spaces of knots and links
- The rational homology of spaces of long knots in codimension \(> 2\)
- A homotopy-theoretic view of Bott-Taubes integrals and knot spaces
- Dyer-Lashof-Cohen operations in Hochschild cohomology.
- Nontrivalent graph cocycle and cohomology of the long knot space
- On the homology of the space of knots
- On Kontsevich's characteristic classes for higher dimensional sphere bundles. I: The simplest class
- Integral invariants of 3-manifolds
- Chern-Simons perturbation theory. II
- Finite-type invariants of classical and virtual knots
- Milnor invariants of string links, trivalent trees, and configuration space integrals
- Manifold-theoretic compactifications of configuration spaces
- On the Vassiliev knot invariants
- Configuration spaces and Vassiliev classes in any dimension
- The configuration space integral for links in \(\mathbb{R}^3\)
- The Milnor triple linking number of string links by cut-and-paste topology
- Sur quelques points d'algèbre homologique
- Homologie singulière des espaces fibrés. Applications
- CONFIGURATION SPACE INTEGRALS AND THE COHOMOLOGY OF THE SPACE OF HOMOTOPY STRING LINKS
- A geometric homology representative in the space of knots
- Seminar on Transformation Groups. (AM-46)
- Compositional Methods in Homotopy Groups of Spheres. (AM-49)
- Operads and knot spaces
- The topology of spaces of knots: cosimplicial models
- A SURVEY OF BOTT–TAUBES INTEGRATION
- ON THE OTHER SIDE OF THE BIALGEBRA OF CHORD DIAGRAMS
- On Kontsevich's characteristic classes for higher-dimensional sphere bundles II: Higher classes
- On the self-linking of knots
- On cobordism of manifolds with corners
- ON THE CASSON KNOT INVARIANT
- NONTRIVIAL CLASSES IN H*(Imb(S1,ℝn)) FROM NONTRIVALENT GRAPH COCYCLES