Local-global principles for zero-cycles on homogeneous spaces over arithmetic function fields
DOI10.1090/tran/7911zbMath1440.14035arXiv1710.03173OpenAlexW2963970193WikidataQ101424806 ScholiaQ101424806MaRDI QIDQ5240157
Daniel Krashen, David Harbater, Jean-Louis Colliot-Thélène, Julia Hartmann, Venapally Suresh, Raman Parimala
Publication date: 24 October 2019
Published in: Transactions of the American Mathematical Society (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1710.03173
zero-cycleslocal-global principlesdiscrete valuation ringslinear algebraic groups and torsorssemiglobal fields
Separable extensions, Galois theory (12F10) Galois cohomology (12G05) Rational points (14G05) Arithmetic ground fields for curves (14H25) Algebraic cycles (14C25) Galois cohomology of linear algebraic groups (11E72)
Related Items (6)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Period-index and \(u\)-invariant questions for function fields over complete discretely valued fields
- Fibres quadratiques et composantes connexes réelles
- Homogeneous varieties -- zero-cycles of degree one versus rational points
- Patching over fields
- Applications of patching to quadratic forms and central simple algebras
- Abelianization of the second nonabelian Galois cohomology
- Patching and local-global principles for homogeneous spaces over function fields of \(p\)-adic curves
- Arithmetic of linear algebraic groups over 2-dimensional geometric fields
- Arithmetical birational invariants of linear algebraic groups over two-dimensional geometric fields
- The index of an algebraic variety
- Formulas for the unramified Brauer group of a principal homogeneous space of a linear algebraic group.
- Local-global Galois theory of arithmetic function fields
- Local-global principles for Galois cohomology
- Algebraic approximation of structures over complete local rings
- Lois de réciprocité supérieures et points rationnels
- Field Patching, Factorization, and Local–Global Principles
- Refinements to Patching and Applications to Field Invariants
- Local-global principles for torsors over arithmetic curves
- Résolutions flasques des groupes linéaires connexes
- Local–global principle for reduced norms over function fields of -adic curves
- Arithmetic of 0-cycles on varieties defined over number fields
This page was built for publication: Local-global principles for zero-cycles on homogeneous spaces over arithmetic function fields