Bi-Hamiltonian structure of a dynamical system introduced by Braden and Hone
DOI10.1088/1361-6544/ab2d5ezbMath1442.70010arXiv1901.03558OpenAlexW3101184845MaRDI QIDQ5240842
Publication date: 29 October 2019
Published in: Nonlinearity (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1901.03558
integrable systemsHamiltonian reductionbi-Hamiltonian systemsspin Ruijsenaars-Schneider-Sutherland models
Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.) (37K10) Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests (37J35) Completely integrable systems and methods of integration for problems in Hamiltonian and Lagrangian mechanics (70H06)
Related Items (5)
Cites Work
- Unnamed Item
- Unnamed Item
- A simple way of making a Hamiltonian system into a bi-Hamiltonian one
- Spin Calogero models obtained from dynamical \(r\)-matrices and geodesic motion
- Spin Calogero models associated with Riemannian symmetric spaces of negative curvature
- A generalisation of the Calogero-Moser system
- A new class of integrable systems and its relation to solitons
- Stratified symplectic spaces and reduction
- Geometry and classification of solutions of the classical dynamical Yang-Baxter equation
- Bihamiltonian geometry, Darboux coverings, and linearization of the KP hierarchy
- Bi-Hamiltonian formalism: A constructive approach
- Momentum maps and Hamiltonian reduction
- Calogero-Sutherland approach to defect blocks
- From spinning conformal blocks to matrix Calogero-Sutherland models
- Degenerate integrability of the spin Calogero-Moser systems and the duality with the spin Ruijsenaars systems
- A class of integrable spin Calogero-Moser systems
- Poisson-Lie analogues of spin Sutherland models
- Bi-Hamiltonian geometry and canonical spectral coordinates for the rational Calogero-Moser system
- Degenerate integrability of quantum spin Calogero-Moser systems
- Poisson involutions, spin Calogero-Moser systems associated with symmetric Lie subalgebras and the symmetric space spin Ruijsenaars-Schneider models
- Differential Geometry of Singular Spaces and Reduction of Symmetry
- On the Geometric Origin of the Bi-Hamiltonian Structure of the Calogero–Moser System
- On the duality between the hyperbolic Sutherland and the rational Ruijsenaars–Schneider models
- Quasi-compact Higgs bundles and Calogero-Sutherland systems with two types of spins
- Spin generalization of the Ruijsenaars-Schneider model, the non-Abelian 2D Toda chain, and representations of the Sklyanin algebra
- Spin versions of the complex trigonometric Ruijsenaars–Schneider model from cyclic quivers
This page was built for publication: Bi-Hamiltonian structure of a dynamical system introduced by Braden and Hone