Equation-of-state of neutron stars with junction conditions in the Starobinsky model
DOI10.1142/S0218271817501863zbMath1431.83133arXiv1702.05936OpenAlexW3104770540MaRDI QIDQ5242336
Ling-Wei Luo, W. F. Kao, Wei-Xiang Feng, Chao-Qiang Geng
Publication date: 6 November 2019
Published in: International Journal of Modern Physics D (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1702.05936
Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.) (83C55) Relativistic gravitational theories other than Einstein's, including asymmetric field theories (83D05) Galactic and stellar structure (85A15) Quantum hydrodynamics and relativistic hydrodynamics (76Y05)
Related Items (4)
Cites Work
- Nonperturbative models of quark stars in \(f(R)\) gravity
- \(f(R)\) theories
- Cosmological constant -- the weight of the vacuum
- Structure of neutron stars in \(R\)-squared gravity
- Modified gravity theories on a nutshell: inflation, bounce and late-time evolution
- A new type of isotropic cosmological models without singularity
- Neutron stars in generalized \(f(R)\) gravity
- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>f</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>R</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math>theories of gravity
- The cosmological constant and dark energy
- Singularity Problem with<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>f</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>R</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>Models for Dark Energy
- DYNAMICS OF DARK ENERGY
- Junction Conditions in f(R) Theories of Gravity
- Inflationary universe: A possible solution to the horizon and flatness problems
- The cosmological constant problem
- A no-go theorem for polytropic spheres in Palatini f ( R ) gravity
- On Massive Neutron Cores
- The cosmological constant
This page was built for publication: Equation-of-state of neutron stars with junction conditions in the Starobinsky model