On Lagrange's four squares theorem with almost prime variables
From MaRDI portal
Publication:524588
DOI10.1515/crelle-2014-0094zbMath1372.11096OpenAlexW2324835191MaRDI QIDQ524588
Publication date: 3 May 2017
Published in: Journal für die Reine und Angewandte Mathematik (Search for Journal in Brave)
Full work available at URL: http://hdl.handle.net/10722/245057
Sums of squares and representations by other particular quadratic forms (11E25) Waring's problem and variants (11P05) Goldbach-type theorems; other additive questions involving primes (11P32) Applications of the Hardy-Littlewood method (11P55) Applications of sieve methods (11N36)
Related Items
Finiteness theorems for universal sums of squares of almost primes ⋮ Uniform bounds for norms of theta series and arithmetic applications ⋮ Lagrange's equation with one prime and three almost-primes ⋮ On a conjecture of Sun about sums of restricted squares ⋮ Counting integer points on quadrics with arithmetic weights ⋮ Lagrange's equation with almost-prime variables ⋮ A twist of the Gauss circle problem by holomorphic cusp forms ⋮ Finite Saturation for Unirational Varieties ⋮ Representation of even integers as a sum of squares of primes and powers of two
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- The square sieve and consecutive square-free numbers
- LAGRANGE'S FOUR SQUARES THEOREM WITH VARIABLES OF SPECIAL TYPE
- A New Application of the Hardy-Littlewood-Kloosterman Method
- AN ASYMPTOTIC FORMULA FOR THE NUMBER OF SOLUTIONS OF A NONLINEAR EQUATION WITH PRIME NUMBERS
- On the representation of the integer by positive quadratic forms with square-free variables
- Lagrange's Four Squares Theorem with almost prime variables.
- Lagranges four squares theorem with one prime and three almost-prime variables
- On the representation of a number in the form x^2+y^2+p^2+q^2 where p, q are odd primes