Lower bounds for ranks of Mumford-Tate groups
From MaRDI portal
Publication:5255625
DOI10.24033/bsmf.2684zbMath1325.14061arXiv1110.6816OpenAlexW2962923716MaRDI QIDQ5255625
Publication date: 16 June 2015
Published in: Bulletin de la Société mathématique de France (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1110.6816
Arithmetic ground fields for abelian varieties (14K15) Global ground fields in algebraic geometry (14G25) Representations of Lie and linear algebraic groups over global fields and adèle rings (22E55)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Finiteness theorems for abelian varieties over number fields.
- On the Mumford-Tate group of an abelian variety with complex multiplication
- Determining representations from invariant dimensions
- Abelian varieties, \(\ell\)-adic representations, and \(\ell\)-independence
- A note of Shimura's paper: Discontinuous groups and Abelian varieties
- Abelian varieties attached to polarized \(K_3\)-surfaces
- On canonical models of arithmetic quotients of bounded symmetric domains
- Torsion dans un produit de courbes elliptiques
- Majoration explicite de l'ordre maximum d'un élément du groupe symétrique
- Groupes Algebriques Associes a Certaines Representations p-adiques
- Division fields of abelian varieties with complex multiplication
- POINTS OF FINITE ORDER ON AN ABELIAN VARIETY
- Hodge groups of Abelian varieties with purely multiplicative reduction
- ℓ-adic algebraic monodromy groups, cocharacters, and the MumfordTate conjecture
- Représentations linéaires irréductibles d'un groupe réductif sur un corps quelconque.
This page was built for publication: Lower bounds for ranks of Mumford-Tate groups