On Monodromically Full Points of Configuration Spaces of Hyperbolic Curves
From MaRDI portal
Publication:5259213
DOI10.1007/978-3-642-23905-2_8zbMath1317.14065OpenAlexW2136308190MaRDI QIDQ5259213
Publication date: 26 June 2015
Published in: The Arithmetic of Fundamental Groups (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/978-3-642-23905-2_8
Universal profinite groups (relationship to moduli spaces, projective and moduli towers, Galois theory) (14G32) Families, moduli of curves (algebraic) (14H10) Coverings of curves, fundamental group (14H30)
Related Items (9)
The absolute anabelian geometry of quasi-tripods ⋮ A pro-\(l\) version of the congruence subgroup problem for mapping class groups of genus one ⋮ A restricted Magnus property for profinite surface groups ⋮ On a problem of Matsumoto and Tamagawa concerning monodromic fullness of hyperbolic curves: genus zero case ⋮ On the kernels of the pro-\(l\) outer Galois representations associated to hyperbolic curves over number fields ⋮ Galois-theoretic characterization of geometric isomorphism classes of quasi-monodromically full hyperbolic curves with small numerical invariants ⋮ Difference between \(l\)-adic Galois representations and pro-\(l\) outer Galois representations associated to hyperbolic curves ⋮ Congruence topologies on the mapping class group ⋮ The pro-l outer Galois actions associated to modular curves of prime power level
Cites Work
- Unnamed Item
- Unnamed Item
- Pro-\(\ell\) branched coverings of \(P^ 1\) and higher circular \(\ell\)- units
- On the combinatorial cuspidalization of hyperbolic curves
- Existence of nongeometric pro-\(p\) Galois sections of hyperbolic curves
- On the combinatorial anabelian geometry of nodally nondegenerate outer representations
- The congruence subgroup property for the hyperelliptic modular group: the open surface case
- The algebraic and anabelian geometry of configuration spaces
- Absolute anabelian cuspidalizations of configuration spaces of proper hyperbolic curves over finite fields
- Correspondences on hyperbolic curves
- The absolute anabelian geometry of canonical curves
- The local pro-p anabelian geometry of curves
- The irreducibility of the space of curves of a given genus
- Séminaire de géométrie algébrique du Bois Marie 1960/61 (SGA 1), dirigé par Alexander Grothendieck. Augmenté de deux exposés de M. Raynaud. Revêtements étales et groupe fondamental. Exposés I à XIII. (Seminar on algebraic geometry at Bois Marie 1960/61 (SGA 1), directed by Alexander Grothendieck. Enlarged by two reports of M. Raynaud. Ètale coverings and fundamental group)
- Séminaire de Géométrie Algébrique Du Bois-Marie 1967--1969. Groupes de monodromie en géométrie algébrique (SGA 7 I). Dirigé par A. Grothendieck avec la collaboration de M. Raynaud et D. S. Rim. Exposés I, II, VI, VII, VIII, IX
- Difference between Galois representations in automorphism and outer-automorphism groups of a fundamental group
- Galois-theoretic characterization of isomorphism classes of monodromically full hyperbolic curves of genus zero
- The projectivity of the moduli space of stable curves, II: The stacks $M_{g,n}$
- Galois rigidity of pro-𝑙 pure braid groups of algebraic curves
- Mapping-class-group action versus Galois action on profinite fundamental groups
- The faithfulness of the monodromy representations associated with certain families of algebraic curves
This page was built for publication: On Monodromically Full Points of Configuration Spaces of Hyperbolic Curves