Shrinkage Estimation of the Memory Parameter in Stationary Gaussian Processes
DOI10.1080/03610926.2013.770534zbMath1328.62187OpenAlexW1992233260MaRDI QIDQ5265852
Abdulkadir Hussein, Sévérien Nkurunziza
Publication date: 29 July 2015
Published in: Communications in Statistics - Theory and Methods (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1080/03610926.2013.770534
shrinkage estimatorstationary Gaussian processMLEasymptotic distributional riskQMLEconstrained inference
Asymptotic properties of parametric estimators (62F12) Estimation in multivariate analysis (62H12) Ridge regression; shrinkage estimators (Lasso) (62J07) Parametric inference under constraints (62F30)
Related Items (1)
Cites Work
- Unnamed Item
- On continuous-time autoregressive fractionally integrated moving average processes
- Preliminary test ridge regression estimators with Student's \(t\) errors and conflicting test-statis\-tics
- Preliminary Test Estimation for Regression Models with Long-Memory Disturbance
- Shrinkage strategies in some multiple multi-factor dynamical systems
- Estimating a change point in the long memory parameter
- ASYMPTOTIC THEORY FOR MAXIMUM LIKELIHOOD ESTIMATION OF THE MEMORY PARAMETER IN STATIONARY GAUSSIAN PROCESSES
- Shrinkage drift parameter estimation for multi‐factor Ornstein–Uhlenbeck processes
- Theory of Preliminary Test and Stein‐Type Estimation With Applications
- Optimum Critical Value for Pre-Test Estimator
This page was built for publication: Shrinkage Estimation of the Memory Parameter in Stationary Gaussian Processes