On some mean value results for the zeta-function and a divisor problem

From MaRDI portal
Publication:5279516

DOI10.2298/FIL1608315IzbMATH Open1450.11088arXiv1406.0604MaRDI QIDQ5279516

Aleksandar Ivić

Publication date: 19 July 2017

Published in: Filomat (Search for Journal in Brave)

Abstract: Let Delta(x) denote the error term in the classical Dirichlet divisor problem, and let the modified error term in the divisor problem be Delta*(x)=Delta(x)+2Delta(2x)frac12Delta(4x). We show that int_T^{T+H}Delta^*�igl(frac{t}{2pi}�igr)|zeta(1/2+it)|^2dt ;ll; HT^{1/6}log^{7/2}T quad(T^{2/3+varepsilon} le H = H(T) le T), int_0^TDelta(t)|zeta(1/2+it)|^2dt ;ll; T^{9/8}(log T)^{5/2}, and obtain asymptotic formulae for int_0^T{Bigl(Delta^*�igl(frac{t}{2pi}�igr)Bigr)}^2 |zeta(1/2+it)|^2dt,quad int_0^T{Bigl(Delta^*�igl(frac{t}{2pi}�igr)Bigr)}^3|zeta(1/2+it)|^2dt. The importance of the Delta*-function comes from the fact that it is the analogue of E(T), the error term in the mean square formula for |zeta(1/2+it)|2. We also show, if E*(T):=E(T)2piDelta*(T/(2pi)), int_0^T E^*(t)E^j(t)|zeta(1/2+it)|^2dt ; ll_{j,varepsilon}; T^{7/6+j/4+varepsilon}quad(j= 1,2,3).


Full work available at URL: https://arxiv.org/abs/1406.0604






Related Items (5)






This page was built for publication: On some mean value results for the zeta-function and a divisor problem

Report a bug (only for logged in users!)Click here to report a bug for this page (MaRDI item Q5279516)