Recurrence and transience of reflecting Brownian motion in the quadrant

From MaRDI portal
Publication:5288387

DOI10.1017/S0305004100076040zbMath0776.60100OpenAlexW2106424453MaRDI QIDQ5288387

L. C. G. Rogers, David G. Hobson

Publication date: 24 November 1993

Published in: Mathematical Proceedings of the Cambridge Philosophical Society (Search for Journal in Brave)

Full work available at URL: https://doi.org/10.1017/s0305004100076040




Related Items (19)

On positive recurrence of constrained diffusion processesReflected Brownian motion in the quadrant: Tail behavior of the stationary distributionDegenerate competing three-particle systemsProbability of total domination for transient reflecting processes in a quadrantA new family of positive recurrent semimartingale reflecting Brownian motions in an orthantSplitting Algorithms for Rare Events of Semimartingale Reflecting Brownian MotionsGreen's functions with oblique Neumann boundary conditions in the quadrantTutte’s invariant approach for Brownian motion reflected in the quadrantVariational problem in the non-negative orthant of \(\mathbb{R}^{3}\): reflective faces and boundary influence conesReflected Brownian motion in a convex polyhedral cone: tail estimates for the stationary distributionDiffusions with rank-based characteristics and values in the nonnegative quadrantStationary distribution of a two-dimensional SRBM: geometric views and boundary measuresReflecting random walks in curvilinear wedgesEscape and absorption probabilities for obliquely reflected Brownian motion in a quadrantMultidimensional random walk with reflectionsSur la récurrence positivedu mouvement brownien réflechidans l'orthant positif deIntegral expression for the stationary distribution of reflected Brownian motion in a wedgeA sufficient condition for the positive recurrence of a semimartingale reflecting Brownian motion in an orthantA dual skew symmetry for transient reflected Brownian motion in an orthant



Cites Work


This page was built for publication: Recurrence and transience of reflecting Brownian motion in the quadrant