Correnti positive: Uno strumento per l’analisi globale su varietà complesse
From MaRDI portal
Publication:5290108
DOI10.1007/BF02925830zbMath1098.32505MaRDI QIDQ5290108
Publication date: 26 April 2006
Published in: Rendiconti del Seminario Matematico e Fisico di Milano (Search for Journal in Brave)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Metric properties of manifolds bimeromorphic to compact Kähler spaces
- A numerical criterion for very ample line bundles
- Sur le prolongement des courants positifs fermés
- Plurisubharmonische Funktionen in komplexen Räumen
- Stabilité de la classe des variétés Kaehleriennes par certains morphismes propres
- A new capacity for plurisubharmonic functions
- An intrinsic characterization of Kähler manifolds
- Positive \(\partial\bar\partial\)-closed currents and non-Kähler geometry
- Complete characterization of holomorphic chains of codimension one
- Quelques problèmes de prolongement de courants en analyse complexe
- Algebraicity criteria for compact complex manifolds
- Nombres de Lelong généralisés, théorèmes d'intégralité et d'analyticité. (Generalized Lelong numbers, integrability and analyticity theorems)
- Algébricité et compacité dans l'espace des cycles d'un espace analytique complexe
- Sur les nombres de Lelong associés à l'image directe d'un courant positif fermé
- Prolongement des courants, positifs, fermes de masse finie
- Spherical shells as obstructions for the extension of holomorphic mappings
- Properties of compact complex manifolds carrying closed positive currents
- Extension of meromorphic maps into Kähler manifolds
- Cycles for the dynamical study of foliated manifolds and complex manifolds
- The topology of the space of positive analytic cycles
- Closedness of the Douady spaces of compact Kähler spaces
- A characterization of holomorphic chains
- Analyticity of sets associated to Lelong numbers and the extension of closed positive currents
- Slicing of closed positive currents and the equation of Lelong-Poincaré
- Conditions for the analyticity of certain sets
- The continuity of the fiber integral
- On the removal of singularities of analytic sets
- Normal and integral currents
- Algebraic values of meromorphic maps
- The currents defined by analytic varieties
- On the structure of positive currents
- Lelong numbers of positive plurisubharmonic currents
- Intégration sur un ensemble analytique complexe
- Mesures de Monge-Ampère et caractérisation géométrique des variétés algébriques affines
- On the douady space of a compact complex space in the category
- Removable Singularities for Positive Currents
- Global Residues and Intersections on a Complex Manifold
- Extending analytic objects
- Holomorphic convexity of spaces of analytic cycles
- Convexité de l'espace des cycles
- Plurisubharmonic currents and their extension across analytic subsets
- A cut-off theorem for plurisubharmonic currents
- Compact complex threefolds which are Kähler outside a smooth rational curve
- Analyticity of sets associated to Lelong numbers and the extension of meromorphic maps
- Corrigenda to: Introduction to Symplectic Topology
- Sous-ensembles analytiques d'ordre fini ou infini dans $C^n$
- Remarques sur la cohomologie des variétés analytiques complexes
- Éléments extrémaux sur le cône des courants positifs fermés
This page was built for publication: Correnti positive: Uno strumento per l’analisi globale su varietà complesse