Stickelberger elements for \(\mathbb Z^d_p\)-extensions of function fields
DOI10.1016/j.jnt.2008.04.006zbMath1225.11156OpenAlexW2052239245MaRDI QIDQ531776
Ka-Lam Kueh, Ki-Seng Tan, King-Fai Lai
Publication date: 20 April 2011
Published in: Journal of Number Theory (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jnt.2008.04.006
Iwasawa theoryclass numbersspecial values of \(L\)-functionsregulatorsconjecture of Grosslocal Leopoldt conjectureStickelberger element
Arithmetic theory of algebraic function fields (11R58) Zeta functions and (L)-functions of number fields (11R42) Iwasawa theory (11R23) Zeta functions and (L)-functions (11S40)
Related Items (3)
Cites Work
- Multiplicative independence in function fields
- The Stark conjectures on Artin \(L\)-functions at \(s=0\). Lecture notes of a course in Orsay edited by Dominique Bernardi and Norbert Schappacher.
- The refined \(\mathfrak p\)-adic abelian Stark conjecture in function fields
- Congruences between derivatives of abelian \(L\)-functions at \(s =0\)
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Stickelberger elements for \(\mathbb Z^d_p\)-extensions of function fields