Mathematical Research Data Initiative
Main page
Recent changes
Random page
Help about MediaWiki
Create a new Item
Create a new Property
Create a new EntitySchema
Merge two items
In other projects
Discussion
View source
View history
Purge
English
Log in

The A-T-menability of some graphs of groups with cyclic edge groups

From MaRDI portal
Publication:5360456
Jump to:navigation, search

DOI10.1017/S0305004116000761zbMath1476.20040arXiv1512.04599OpenAlexW2964032826MaRDI QIDQ5360456

Mathieu Carette, Daniel J. Woodhouse, Daniel T. Wise

Publication date: 28 September 2017

Published in: Mathematical Proceedings of the Cambridge Philosophical Society (Search for Journal in Brave)

Full work available at URL: https://arxiv.org/abs/1512.04599



Mathematics Subject Classification ID

Geometric group theory (20F65) Hyperbolic groups and nonpositively curved groups (20F67) Groups acting on trees (20E08) Other representations of locally compact groups (22D12) Measurable group actions (22F10)


Related Items (1)

The Baum–Connes conjecture: an extended survey



Cites Work

  • Unnamed Item
  • A cubical flat torus theorem and the bounded packing property
  • Commensurability and separability of quasiconvex subgroups.
  • Kazhdan and Haagerup properties from the median viewpoint.
  • Séminaire de probabilités XXVII
  • Special cube complexes
  • Crofton formulae and geodesic distance in hyperbolic spaces
  • Borel cocycles, approximation properties and relative property T
  • Spaces with measured walls, the Haagerup property and property (T)
  • Cores for quasiconvex actions


This page was built for publication: The A-T-menability of some graphs of groups with cyclic edge groups

Retrieved from "https://portal.mardi4nfdi.de/w/index.php?title=Publication:5360456&oldid=20066201"
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information
MaRDI portal item
This page was last edited on 9 February 2024, at 01:21.
Privacy policy
About MaRDI portal
Disclaimers
Imprint
Powered by MediaWiki