Leading coefficient of the Goss Zeta value and p-ranks of Jacobians of Carlitz cyclotomic covers
DOI10.5802/jtnb.1008zbMath1430.11124OpenAlexW2793736878MaRDI QIDQ5374149
Dinesh S. Thakur, Gebhard Böckle
Publication date: 9 April 2018
Published in: Journal de Théorie des Nombres de Bordeaux (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.5802/jtnb.1008
Bernoulli numberpower sumHerbrand-Ribet theoremHasse-Witt invariantordinarinessArtin-Schreier polynomialCarlitz cyclotomic fieldGoss \(\zeta\)-function
Jacobians, Prym varieties (14H40) Cyclotomic function fields (class groups, Bernoulli objects, etc.) (11R60) Zeta and (L)-functions in characteristic (p) (11M38) Algebraic functions and function fields in algebraic geometry (14H05)
Related Items (2)
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A Herbrand-Ribet theorem for function fields
- Cohomological theory of crystals over function fields
- Power sums with applications to multizeta and zeta zero distribution for \(\mathbb F_q[t\)]
- Class-groups of function fields
- On power sums of polynomials over finite fields
- The class number of cyclotomic function fields
- Ordinary cyclotomic function fields
- The distribution of the zeros of the Goss zeta-function for \(A=\mathbb{F}_2[x,y/(y^2+y+x^3+x+1)\)]
- Sums of products of multinomial coefficients
- How can we construct abelian Galois extensions of basic number fields?
- The Hasse–Witt invariant of cyclotomic function fields
- Cohomological Theory of Crystals over Function Fields and Applications
- Abelian varieties with group action
- Abelian varieties over finite fields
- On Multinomial Coefficients
- Die Hasse-Witt-Invariante eines Kongruenzfunktionenkörpers
This page was built for publication: Leading coefficient of the Goss Zeta value and p-ranks of Jacobians of Carlitz cyclotomic covers