Extension and approximation ofm-subharmonic functions
From MaRDI portal
Publication:5374213
DOI10.1080/17476933.2017.1345888zbMath1390.32023arXiv1703.03181OpenAlexW2605265472MaRDI QIDQ5374213
Rafał Czyż, Lisa Hed, Per Åhag
Publication date: 9 April 2018
Published in: Complex Variables and Elliptic Equations (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1703.03181
Convex sets in topological linear spaces; Choquet theory (46A55) Plurisubharmonic functions and generalizations (32U05) Other notions of convexity in relation to several complex variables (32F17)
Related Items (6)
Structure of singular sets of some classes of subharmonic functions ⋮ A note on the space of delta \(m\)-subharmonic functions ⋮ Approximation of \(m\)-subharmonic functions on bounded domains in \(\mathbb{C}^n\) ⋮ Maximal \(m\)-subharmonic functions and the Cegrell class \(\mathcal{N}_m\) ⋮ The Dirichlet problem for $m$-subharmonic functions on compact sets ⋮ The classification of holomorphic (m, n)-subharmonic morphisms
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A second order estimate for general complex Hessian equations
- The Dirichlet problem for harmonic functions on compact sets
- Dirichlet problems for plurisubharmonic functions on compact sets
- Potential theory in the class of \(m\)-subharmonic functions
- Approximation by harmonic functions, and stability of the Dirichlet problem
- Harmonic and superharmonic functions on compact sets
- Une classe de domaines pseudoconvexes. (A class of pseudoconvex domains)
- The Dirichlet problem for nonlinear second order elliptic equations. III: Functions of the eigenvalues of the Hessian
- Sur un théorème de prolongement fonctionnel de Keldych concernant le problème de Dirichlet
- Potentiel fin et algèbres de fonctions analytiques. I
- Simplicial cones in potential theory
- Simplicial cones in potential theory. II: Approximation theorems
- On the Dirichlet problems for symmetric function equations of the eigenvalues of the complex Hessian
- Potential theory. An analytic and probabilistic approach to balayage
- Analytic geometry on compacta in \(\mathbb{C}^ n\)
- Plurisubharmonic approximation and boundary values of plurisubharmonic functions
- Weak solutions to the complex Hessian equation.
- Regularity of Radial Solutions to the Complex Hessian Equations
- Plurisubharmonic functions on compact sets
- On a Generalized Dirichlet Problem for Plurisubharmonic Functions and Pseudo-Convex Domains. Characterization of Silov Boundaries
- Algebraic potential theory
- Approximation by (Pluri) Subharmonic Functions: Fusion and Localization
- Jensen measures, hyperconvexity and boundary behaviour of the pluricomplex Green function
- Approximation by harmonic functions
- Approximation of plurisubharmonic functions by multipole Green functions
- Sur l'approximation et la convergence dans la théorie des fonctions harmoniques ou holomorphes
- Sur l'approximation des fonctions harmoniques
- Approximation of plurisubharmonic functions
- Approximation of plurisubharmonic functions
- Notions of convexity
- Complex Hessian operator and Lelong number for unbounded m-subharmonic functions
This page was built for publication: Extension and approximation ofm-subharmonic functions