Weighted kappa is higher than Cohen's kappa for tridiagonal agreement tables
From MaRDI portal
Publication:537483
DOI10.1016/j.stamet.2010.09.004zbMath1213.62187OpenAlexW2121551382MaRDI QIDQ537483
Publication date: 20 May 2011
Published in: Statistical Methodology (Search for Journal in Brave)
Full work available at URL: http://hdl.handle.net/1887/16423
Related Items (14)
A family of multi-rater kappas that can always be increased and decreased by combining categories ⋮ The effect of combining categories on Bennett, Alpert and Goldstein's \(S\) ⋮ Equivalences of weighted kappas for multiple raters ⋮ Cohen's quadratically weighted kappa is higher than linearly weighted kappa for tridiagonal agreement tables ⋮ Conditional inequalities between Cohen's kappa and weighted kappas ⋮ Kappa coefficients for circular classifications ⋮ Weighted kappas for \(3 \times 3\) tables ⋮ Some paradoxical results for the quadratically weighted kappa ⋮ On the equivalence of multirater kappas based on 2-agreement and 3-agreement with binary scores ⋮ Bayesian testing of agreement criteria under order constraints ⋮ Cohen's linearly weighted kappa is a weighted average ⋮ Cohen's kappa is a weighted average ⋮ Cohen's linearly weighted kappa is a weighted average of \(2\times 2\) kappas ⋮ A comparison of reliability coefficients for ordinal rating scales
Cites Work
This page was built for publication: Weighted kappa is higher than Cohen's kappa for tridiagonal agreement tables