A Liouville theorem for the semilinear fractional CR covariant equation on the heisenberg group
DOI10.1080/17476933.2018.1523898zbMath1415.35071OpenAlexW2893479732MaRDI QIDQ5378425
Xinjing Wang, Xuewei Cui, Peng Cheng Niu
Publication date: 12 June 2019
Published in: Complex Variables and Elliptic Equations (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1080/17476933.2018.1523898
Existence problems for PDEs: global existence, local existence, non-existence (35A01) PDEs on Heisenberg groups, Lie groups, Carnot groups, etc. (35R03) Fractional partial differential equations (35R11) Liouville theorems and Phragmén-Lindelöf theorems in context of PDEs (35B53) Boundary value problems for second-order elliptic systems (35J57)
Related Items (3)
Cites Work
- Unnamed Item
- An extension problem for the CR fractional Laplacian
- A nonlinear Liouville theorem for fractional equations in the Heisenberg group
- The Yamabe problem on CR manifolds
- Liouville theorems for semilinear equations on the Heisenberg group
- Harnack inequality for fractional sub-Laplacians in Carnot groups
- Hypoelliptic second order differential equations
- Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérées
- A concave—convex elliptic problem involving the fractional Laplacian
- Estimates for the \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop \partial \limits^ - _b $\end{document} complex and analysis on the heisenberg group
- Nonlinear liouville theorems in the heisenberg group vip the moving plane method
- An Extension Problem Related to the Fractional Laplacian
This page was built for publication: A Liouville theorem for the semilinear fractional CR covariant equation on the heisenberg group