Explicit counting of ideals and a Brun–Titchmarsh inequality for the Chebotarev density theorem
From MaRDI portal
Publication:5380752
DOI10.1142/S1793042119500477zbMath1456.11218arXiv1611.10103OpenAlexW2963147302WikidataQ128851527 ScholiaQ128851527MaRDI QIDQ5380752
Publication date: 6 June 2019
Published in: International Journal of Number Theory (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1611.10103
Lattices and convex bodies (number-theoretic aspects) (11H06) Applications of sieve methods (11N36) Distribution of prime ideals (11R44)
Related Items
Pointwise bound for \(\ell \)-torsion in class groups: elementary abelian extensions ⋮ On the number of integral ideals in a number field ⋮ Modular forms and an explicit Chebotarev variant of the Brun-Titchmarsh theorem ⋮ Composite values of shifted exponentials ⋮ Two explicit divisor sums ⋮ An effective Chebotarev density theorem for families of number fields, with an application to \(\ell \)-torsion in class groups ⋮ Counting ideals in ray classes ⋮ Uniform bounds for lattice point counting and partial sums of zeta functions
Cites Work
- On the distribution of integral ideals and Hecke Grössencharacters
- A bound for the least prime ideal in the Chebotarev density theorem
- Some effective cases of the Brauer-Siegel theorem
- An application of algebraic sieve theory
- On the ideal theorem for number fields
- Counting integral ideals in a number field
- Bertrand’s postulate for number fields
- Verallgemeinerung der Siebmethode von A. Selberg auf algebraische Zahlkörper. III.
- Northcott's theorem on heights II. The quadratic case
- The large sieve
- The 𝑘^{𝑡ℎ} prime is greater than 𝑘(ln𝑘+lnln𝑘-1) for 𝑘≥2
- On the Distribution of Integer Ideals in Algebraic Number Fields
- Explicit Upper Bounds for Residues of Dedekind Zeta Functions and Values ofL-Functions ats= 1, and Explicit Lower Bounds for Relative Class Numbers of CM-Fields
- A Chebotarev Variant of the Brun–Titchmarsh Theorem and Bounds for the Lang-Trotter conjectures
- Eine Anwendung des Selbergschen Siebes auf algebraische Zahlkörper
- On the Brun–Titchmarsh theorem
- Counting primitive points of bounded height
- Obere und untere Abschätzungen in algebraischen Zahlkörpern mit Hilfe des linearen Selbergschen Siebes
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item