Deformations of Bloch groups and Aomoto dilogarithms in characteristic \(p\)
From MaRDI portal
Publication:538178
DOI10.1016/j.jnt.2011.02.003zbMath1243.11074OpenAlexW2040549553MaRDI QIDQ538178
Publication date: 23 May 2011
Published in: Journal of Number Theory (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jnt.2011.02.003
Polylogarithms and relations with (K)-theory (11G55) Étale cohomology, higher regulators, zeta and (L)-functions ((K)-theoretic aspects) (19F27) Higher symbols, Milnor (K)-theory (19D45) Infinitesimal methods in algebraic geometry (14B10)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Additive polylogarithms and their functional equations
- On the additive dilogarithm
- On \(K_ 3\) of \(\mathbb F_ q[t/(t^ 2)\) and \(\mathbb F_ q[t]/(t^ 3)\)]
- Homologie du groupe linéaire et K-théorie de Milnor des anneaux. (Homology of the linear group and Milnor's K-theory of rings)
- The additive dilogarithm
- \(K_ 3\) of a field and the Bloch group
- Geometry of configurations, polylogarithms, and motivic cohomology
- Conditions necessaires et suffisantes pour l'équivalence des polyedres de l'espace euclidien à trois dimensions
- Groupes fondamentaux motiviques de Tate mixte
- The generalized de Rham-Witt complex over a field is a complex of zero-cycles
- Volumes of hyperbolic manifolds and mixed Tate motives
- Motivic Cohomology of Pairs of Simplices
- Higher Regulators, Algebraic 𝐾-Theory, and Zeta Functions of Elliptic Curves
- Algebraic Cycles and Additive Dilogarithm