PURE SEMISIMPLE FINITELY ACCESSIBLE CATEGORIES AND HERZOG'S CRITERION
From MaRDI portal
Publication:5386941
DOI10.1142/S0219498807002648zbMath1151.18005OpenAlexW2121725198MaRDI QIDQ5386941
No author found.
Publication date: 14 May 2008
Published in: Journal of Algebra and Its Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1142/s0219498807002648
Module categories in associative algebras (16D90) Accessible and locally presentable categories (18C35)
Related Items
Indecomposable modules over pure semisimple hereditary rings., DEFINABLE SUBCATEGORIES OVER PURE SEMISIMPLE RINGS
Cites Work
- Unnamed Item
- Unnamed Item
- Preprojective modules over Artin algebras
- Exactly definable categories
- A test for finite representation type
- Copure semisimple categories and almost split maps.
- Endoproperties of modules and local duality.
- Some left pure semisimple ringoids which are not right pure semisimple
- Preinjective modules and finite representation type of artinian rings
- PURE-INJECTIVE ENVELOPES
- Representation Theory of Artin Algebras II
- Finitely Presented Right Modules Over a Left Pure-Semisimple Ring
- Gruson-Jensen Duality for Idempotent Rings
- Perfect rings without identity
- Additive categories of locally finite representation type