An explicit formula for the Hilbert symbol of a formal group
From MaRDI portal
Publication:538794
DOI10.5802/aif.2602zbMath1270.11122arXiv0811.3132OpenAlexW1885975134MaRDI QIDQ538794
Publication date: 26 May 2011
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/0811.3132
Galois cohomology (11S25) Formal groups, (p)-divisible groups (14L05) Class field theory; (p)-adic formal groups (11S31)
Related Items (6)
Pairings in local fields and cryptography ⋮ An Introduction to p-Adic Hodge Theory ⋮ Uniformizer of the false Tate curve extension of \(\mathbb{Q}_p\) ⋮ Syntomic complexes and \(p\)-adic nearby cycles ⋮ Arithmetic families of \((\varphi,\Gamma)\)-modules and locally analytic representations of \(\mathrm{GL}_2(\mathbb Q_p)\) ⋮ Galois cohomology for Lubin-Tate \((\varphi_q,\Gamma_{LT})\)-modules over coefficient rings
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- \(p\)-adic periods of abelian varieties
- Galois Cohomology
- Bloch and Kato's exponential map: three explicit formulas
- On Iwasawa theory of crystalline representations
- \(p\)-adic representations and differential equations
- An explicit formula of the Hilbert pairing for Honda formal groups
- On the theory of commutative formal groups
- Le corps des normes de certaines extensions infinies de corps locaux; applications
- Construction de représentations $p$-adiques
- The dilogarithm and the norm residue symbol
- On explicit reciprocity laws.
- Théorie d’Iwasawa des représentations 𝑝-adiques d’un corps local
- Sur la cohomologie galoisienne des corps $p$-adiques
- Priodiques p-adiques et lois de rciprocit explicites.
- Explicit formulae for the Hilbert symbol of a formal group over the Witt vectors
- A non-commutative Weierstrass preparation theorem and applications to Iwasawa theory
- Limites de représentations cristallines
- Représentations $p$-adiques potentiellement cristallines
- Crystalline representations and F-crystals
- A new approach to Tate's local duality
This page was built for publication: An explicit formula for the Hilbert symbol of a formal group