$p$-spectrum and collapsing of connected sums
From MaRDI portal
Publication:5389409
DOI10.1090/S0002-9947-2011-05351-1zbMath1254.58012OpenAlexW2944782347MaRDI QIDQ5389409
Publication date: 26 April 2012
Published in: Transactions of the American Mathematical Society (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1090/s0002-9947-2011-05351-1
eigenvaluedifferential formsLaplacianHodge-de Rham operatorcollapsing of Riemannian manifoldsAtiyah-Patodi-Singer type boundary condition
Estimates of eigenvalues in context of PDEs (35P15) Spectral problems; spectral geometry; scattering theory on manifolds (58J50) Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces (53C23) Boundary value problems on manifolds (58J32)
Related Items
Cites Work
- Unnamed Item
- Prescription of the multiplicity of the eigenvalues of the Hodge-de Rham Laplacian
- Conformal minoration of the spectrum of the Hodge-de Rham Laplacian
- The adiabatic limit, Hodge cohomology and Leray's spectral sequence for a fibration
- Prescribing the spectrum of a Hodge-de Rham Laplacian within a conformal class
- Spectral geometry and asymptotically conic convergence
- Gaps in the differential forms spectrum on cyclic coverings
- Collapsing of Riemannian manifolds and eigenvalues of Laplace operator
- Sur la multiplicité de la première valeur propre non nulle du Laplacien. (On the multiplicity of the first nonzero eigenvalue of the Laplacian)
- Sur une hypothèse de transversalité d'Arnold. (About a transversality hypothesis of Arnold)
- Opérateur de courbure et laplacien des formes différentielles d'une variété riemannienne
- Extremal eigenvalues of the Laplacian in a conformal class of metrics: the `conformal spectrum'
- Collapsing of connected sums and the eigenvalues of the Laplacian
- Collapsing and Dirac-type operators
- Collapsing and the differential form Laplacian: the case of a smooth limit space.
- On the gap between the first eigenvalues of the Laplacian on functions and \(p\)-forms
- Spectrum of the Laplacian acting on differential \(p\)-forms, and down breaking handles
- Hodge-Laplace operator on compact manifolds deprived of a finite number of balls.
- Construction de laplaciens dont une partie finie du spectre est donnée
- An Index Theorem for First Order Regular Singular Operators
- Eigenvalues of the Laplacian on Forms
- Spectral asymmetry and Riemannian geometry. III
- Differential operators of Fuchs type, conical singularities, and asymptotic methods
- Remark about the spectrum of the 𝑝-form Laplacian under a collapse with curvature bounded below
- Riemannian Metrics with Large First Eigenvalue on Forms of Degree p
- Eigenvalues of the Laplacian acting on 𝑝-forms and metric conformal deformations
- A relative index theorem