Euler characteristics of universal cotangent line bundles on $\overline {\mathcal {M}}_{1,n}$
From MaRDI portal
Publication:5398118
DOI10.1090/S0002-9939-2013-11800-9zbMath1282.14048arXiv1211.2450OpenAlexW2764624587MaRDI QIDQ5398118
Publication date: 26 February 2014
Published in: Proceedings of the American Mathematical Society (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1211.2450
Families, moduli of curves (algebraic) (14H10) Moduli, classification: analytic theory; relations with modular forms (14J15) Families, moduli of curves (analytic) (14H15) Fine and coarse moduli spaces (14D22) Stacks and moduli problems (14D23)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Cohomologie de Chen-Ruan de \(\mathcal{M}_{1, n}\) et \(\overline{\mathcal{M}}_{1, n}\)
- Orbifold quantum Riemann-Roch, Lefschetz and Serre
- The Riemann-Roch theorem for complex V-manifolds
- Quantum \(K\)-theory on flag manifolds, finite-difference Toda lattices and quantum groups
- Quantum \(K\)-theory. I: Foundations
- Riemann-Roch theorems for Deligne-Mumford stacks
- The Hirzebruch--Riemann--Roch theorem in true genus-0 quantum K-theory
- Gromov-Witten theory of Deligne-Mumford stacks
- On the WDVV equation in quantum \(K\)-theory.
This page was built for publication: Euler characteristics of universal cotangent line bundles on $\overline {\mathcal {M}}_{1,n}$