On the rational recursive sequence \(x_{n+1}=\frac{A+\alpha_0x_n+\alpha_1x_{n-\sigma}}{B+\beta_0x_n+\beta_1x_{n-\tau}}\)
From MaRDI portal
Publication:540775
zbMath1221.39016MaRDI QIDQ540775
M. A. El-Moneam, Elsayed M. E. Zayed
Publication date: 3 June 2011
Published in: Acta Mathematica Vietnamica (Search for Journal in Brave)
Full work available at URL: http://www.math.ac.vn/publications/acta/36/Toc_ACTA_1_36.htm
Qualitative theory for ordinary differential equations (34C99) Additive difference equations (39A10) Difference equations (39A99) Multiplicative and other generalized difference equations (39A20)
Related Items (4)
Unnamed Item ⋮ Global stability of a higher-order difference equation ⋮ On the dynamics of the nonlinear rational difference equation \(x_{n+1}=Ax_{n}+Bx_{n-k}+Cx_{n-l}+\frac{bx_{n-k}}{dx{n-k}-ex{n-1}}\) ⋮ On the rational difference equation y n + 1 = α 0 y n + α 1 y n − p + α 2 y n − q + α 3 y n − r + α 4 y n − s β 0 y n + β 1 y n − p + β 2 y n − q + β 3 y n − r + β 4 y n − s
This page was built for publication: On the rational recursive sequence \(x_{n+1}=\frac{A+\alpha_0x_n+\alpha_1x_{n-\sigma}}{B+\beta_0x_n+\beta_1x_{n-\tau}}\)