k-Leibniz algebras from lower order ones: From Lie triple to Lie ℓ-ple systems
From MaRDI portal
Publication:5409683
DOI10.1063/1.4819468zbMath1330.17004arXiv1304.0885OpenAlexW2059190309WikidataQ123194193 ScholiaQ123194193MaRDI QIDQ5409683
José M. Izquierdo, José A. de Azcárraga
Publication date: 14 April 2014
Published in: Journal of Mathematical Physics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1304.0885
Related Items
Generalized metricn-Leibniz algebras and generalized orthogonal representationof metric Lie algebras ⋮ Some constructions of multiplicative \(n\)-ary Hom-Nambu algebras
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- \(\mathcal N= 6\) superconformal Chern-Simons-matter theories, M2-branes and their gravity duals
- Selfdual strings and loop space Nahm equations
- Constructing generalized self-dual strings
- Plücker-type relations for orthogonal planes
- Leibniz and Lie algebra structures for Nambu algebra
- Multiple membranes in M-theory
- The M2-M5 brane system and a generalized Nahm's equation
- On the Lie-algebraic origin of metric 3-algebras
- \(n\)-Lie algebras
- Theory of \(n\)-Lie algebras
- On foundation of the generalized Nambu mechanics
- Higher-order simple Lie algebras
- Jordan-Lie super algebra and Jordan-Lie triple system
- The geometry of Jordan and Lie structures
- On the geometry of inner ideals
- On Lie \(k\)-algebras
- Some remarks concerning Nambu mechanics
- Analogs of the Cartan criteria for \(n\)-Lie algebras
- Open \(p\)-branes
- Leibniz n-algebras
- Three-algebras and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="script">N</mml:mi><mml:mo>=</mml:mo><mml:mn>6</mml:mn></mml:math>Chern-Simons gauge theories
- Triple products and Yang–Baxter equation. II. Orthogonal and symplectic ternary systems
- n-ary algebras: a review with applications
- Secondary Calculus and Cohomological Physics
- On the higher-order generalizations of Poisson structures
- Parastatistics as Lie-supertriple systems
- The Schouten - Nijenhuis bracket, cohomology and generalized Poisson structures
- Generalized Hamiltonian Dynamics
- QUASI-CLASSICAL LIE SUPERALGEBRAS AND LIE SUPERTRIPLE SYSTEMS
- On a class of n-Leibniz deformations of the simple Filippov algebras
- LEIBNIZ TRIPLE SYSTEMS
- General Representation Theory of Jordan Algebras
- A Structure Theory of Lie Triple Systems
- Three-algebras, triple systems and 3-graded Lie superalgebras
- Brane surgery