Comparison theorems for self‐adjoint linear Hamiltonian eigenvalue problems
DOI10.1002/MANA.201200314zbMath1297.34048OpenAlexW2159744771MaRDI QIDQ5417585
Publication date: 21 May 2014
Published in: Mathematische Nachrichten (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1002/mana.201200314
controllabilityoscillation theoremcomparison of eigenvaluesSturmian comparison theoremfinite eigenvaluesstrict normalityself-adjoint eigenvalue problemlinear Hamiltonain systems
Oscillation theory, zeros, disconjugacy and comparison theory for ordinary differential equations (34C10) Linear boundary value problems for ordinary differential equations with nonlinear dependence on the spectral parameter (34B07) Eigenvalues, estimation of eigenvalues, upper and lower bounds of ordinary differential operators (34L15) Boundary eigenvalue problems for ordinary differential equations (34B09)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Oscillation theorems and Rayleigh principle for linear Hamiltonian and symplectic systems with general boundary conditions
- Sturmian theory for ordinary differential equations
- Singular Dirac systems and Sturm-Liouville problems nonlinear in the spectral parameter
- Eigenvalue accumulation for singular Sturm-Liouville problems nonlinear in the spectral parameter
- Eigenvalue theory for time scale symplectic systems depending nonlinearly on spectral parameter
- Discrete and continuous boundary problems
- Rayleigh principle for linear Hamiltonian systems without controllability
- Sturmian theory for linear Hamiltonian systems without controllability
- Rayleigh principle for time scale symplectic systems and applications
- On the Eigenvalue Accumulation of Sturm-Liouville Problems Depending Nonlinearly on the Spectral Parameter
- Discrete Oscillation
- DEFINITENESS OF QUADRATIC FUNCTIONALS
- Oscillation theorems for symplectic difference systems
This page was built for publication: Comparison theorems for self‐adjoint linear Hamiltonian eigenvalue problems