Plurisubharmonic and holomorphic functions relative to the plurifine topology
From MaRDI portal
Publication:542849
DOI10.1016/j.jmaa.2011.03.041zbMath1222.32057arXiv1011.4472OpenAlexW1808729099MaRDI QIDQ542849
Bent Fuglede, Mohamed El Kadiri, Jan J. O. O. Wiegerinck
Publication date: 20 June 2011
Published in: Journal of Mathematical Analysis and Applications (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1011.4472
finely holomorphic functionfinely subharmonic functionplurifine topologyplurifinely holomorphic functionplurifinely plurisubharmonic function
Pluriharmonic and plurisubharmonic functions (31C10) Plurisubharmonic functions and generalizations (32U05)
Related Items
Local property of maximal plurifinely plurisubharmonic functions, Monge–Ampère measures of $\mathcal F$-plurisubharmonic functions, Approximation of plurifinely plurisubharmonic functions, The complex Monge-Ampère type equation for \(\mathcal{F}\)-plurisubharmonic functions, Local maximality for bounded plurifinely plurisubharmonic functions, Maximality of plurifinely plurisubharmonic functions, Remarks on weak convergence of complex Monge-Ampère measures, Complex Monge-Ampère equations for plurifinely plurisubharmonic functions, Range of the complex Monge–Ampère operator on plurifinely domain, Vector spaces of delta-plurisubharmonic functions and extensions of the complex Monge-Ampère operator, Maximal plurifinely plurisubharmonic functions, Local property of maximal unbounded plurifinely plurisubharmonic functions, An equality on the complex Monge-Ampère measures, The stability of solutions to the complex Monge-Ampère equations in bounded \(\mathcal{F} \)-hyperconvex domains, Weighted energy classes of plurifinely plurisubharmonic functions, On the approximation of weakly plurifinely plurisubharmonic functions, Plurifinely plurisubharmonic functions and the Monge Ampère operator, The Dirichlet problem for the complex Monge-Ampère operator on strictly plurifinely pseudoconvex domains, Weakly solutions to the complex Monge-Ampère equation on bounded plurifinely hyperconvex domains, Envelope of plurisubharmonic functions in Cegrell's classes, An equality on Monge-Ampère measures, The locally \(\mathcal{F}\)-approximation property of bounded hyperconvex domains
Cites Work
- Plurisubharmonic functions with logarithmic singularities
- A new capacity for plurisubharmonic functions
- The pluri-fine topology is locally connected
- Fine topology, Šilov boundary, and \((dd^ c)^ n\)
- Sur les fonctions finement holomorphes
- Finely holomorphic functions
- Localization in fine potential theory and uniform approximation by subharmonic functions
- Simplicial cones in potential theory. II: Approximation theorems
- On the equivalence between locally polar and globally polar sets for plurisubharmonic functions on \(C^n\)
- Fonctions harmoniques et fonctions finement harmoniques
- Finely harmonic functions
- Les espaces du type de Beppo Levi
- Continuity properties of finely plurisubharmonic functions and pluripolarity
- Connectedness in the Pluri-fine Topology
- The image of a finely holomorphic map is pluripolar
- Les fonctions plurisousharmoniques
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item