Integrability of maximal functions for generalized Lebesgue spaces with variable exponent
From MaRDI portal
Publication:5449656
DOI10.1002/mana.200510609zbMath1143.46010OpenAlexW2042763080MaRDI QIDQ5449656
Takao Ohno, Tetsu Shimomura, Yoshihiro Mizuta
Publication date: 12 March 2008
Published in: Mathematische Nachrichten (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1002/mana.200510609
Spaces of measurable functions ((L^p)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) (46E30) Maximal functions, Littlewood-Paley theory (42B25)
Related Items (10)
Construction of function spaces close to \(L^\infty \) with associate space close to \(L^1\) ⋮ Maximal functions, Riesz potentials and Sobolev embeddings on Musielak-Orlicz-Morrey spaces of variable exponent in \(\mathbb{R}^n\) ⋮ Boundedness of integral operators of double phase ⋮ Vanishing exponential integrability for Riesz potentials in Morrey–Orlicz spaces ⋮ Boundedness of maximal operators on Herz spaces with radial variable exponent ⋮ Sobolev's inequalities and vanishing integrability for Riesz potentials of functions in the generalized Lebesgue space \(L^{p(\cdot)}(\log L)^{q(\cdot)}\) ⋮ Minimizers of the variable exponent, non-uniformly convex Dirichlet energy ⋮ Integrability of maximal functions and Riesz potentials in Orlicz spaces of variable exponent ⋮ Weak estimates for the maximal and Riesz potential operators in central Herz-Morrey spaces on the unit ball ⋮ HERZ–MORREY SPACES ON THE UNIT BALL WITH VARIABLE EXPONENT APPROACHING AND DOUBLE PHASE FUNCTIONALS
Cites Work
This page was built for publication: Integrability of maximal functions for generalized Lebesgue spaces with variable exponent