Fusion in fractional level \(\widehat{\mathfrak sl}(2)\)-theories with \(k=-\frac{1}{2}\)

From MaRDI portal
Publication:545233

DOI10.1016/j.nuclphysb.2011.02.015zbMath1215.81102arXiv1012.2905OpenAlexW1646016567MaRDI QIDQ545233

David Ridout

Publication date: 22 June 2011

Published in: Nuclear Physics. B (Search for Journal in Brave)

Full work available at URL: https://arxiv.org/abs/1012.2905




Related Items

An admissible level \(\widehat{\mathfrak{osp}}(1| 2)\)-model: modular transformations and the Verlinde formulaModularity of logarithmic parafermion vertex algebrasBraided tensor categories of admissible modules for affine Lie algebrasModularity of Bershadsky-Polyakov minimal modelsRelaxed highest-weight modules. I: Rank 1 casesA Kazhdan-Lusztig correspondence for \(L_{-\frac{3}{2}}(\mathfrak{sl}_3)\)Perturbing the symmetric orbifold from the worldsheetThe free field realisation of the BVW stringCoset constructions of logarithmic \((1, p)\) modelsRigid tensor structure on big module categories for some \(W\)-(super)algebras in type \(A\)Relaxed singular vectors, Jack symmetric functions and fractional level \(\widehat{\mathfrak{sl}}(2)\) modelsModular data and Verlinde formulae for fractional level WZW models IRelating the archetypes of logarithmic conformal field theoryModular data and Verlinde formulae for fractional level WZW models. IICosets, characters and fusion for admissible-level \(\mathfrak{osp}(1 | 2)\) minimal modelsNGK and HLZ: Fusion for Physicists and MathematiciansStaggered and affine Kac modules over \(A_1^{(1)}\)Realizations of simple affine vertex algebras and their modules: the cases \({\widehat{sl(2)}}\) and \({\widehat{osp(1,2)}}\)Staggered modules of \(N = 2\) superconformal minimal modelsRepresentations of the Nappi-Witten vertex operator algebraBosonic ghosts at \(c=2\) as a logarithmic CFTFree field world-sheet correlators for \( \mathrm{AdS}_3\)Classifying relaxed highest-weight modules for admissible-level Bershadsky-Polyakov algebrasSchur-Weyl duality for Heisenberg cosetsUnitary and non-unitary \(N=2\) minimal modelsStrings on $\mathrm{AdS}_3 \times S^3 \times S^3 \times S^1$Braided tensor categories related to \(\mathcal{B}_p\) vertex algebrasAdmissible-level \(\mathfrak{sl}_3\) minimal modelsRelaxed highest-weight modules II: Classifications for affine vertex algebrasFusion rules for the logarithmic \(N\)=1 superconformal minimal models. II: Including the Ramond sector



Cites Work