On the Roter type of Chen ideal submanifolds
From MaRDI portal
Publication:545503
DOI10.1007/s00025-011-0109-xzbMath1230.53017OpenAlexW2024324742WikidataQ125319353 ScholiaQ125319353MaRDI QIDQ545503
Leopold Verstraelen, Miroslava Petrović-Torgašev, Ryszard Deszcz, Małgorzata Głogowska
Publication date: 22 June 2011
Published in: Results in Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s00025-011-0109-x
Higher-dimensional and -codimensional surfaces in Euclidean and related (n)-spaces (53A07) Differential geometry of immersions (minimal, prescribed curvature, tight, etc.) (53C42) Local submanifolds (53B25) Local Riemannian geometry (53B20)
Related Items (19)
Pseudosymmetry properties of generalised Wintgen ideal Legendrian submanifolds ⋮ Curvature properties of Melvin magnetic metric ⋮ Unnamed Item ⋮ On curvature properties of Som-Raychaudhuri spacetime ⋮ On some curvature properties of Lemaitre-Tolman-Bondi spacetime ⋮ Curvature properties of Robinson-Trautman metric ⋮ Some curvature restricted geometric structures for projective curvature tensors ⋮ On some curvature properties of Vaidya–Bonner metric ⋮ On Sultana–Dyer spacetime: Curvatures and geometric structures ⋮ Unnamed Item ⋮ Curvature properties of Kantowski-Sachs metric ⋮ Some properties of δ(2,2) Chen ideal submanifolds ⋮ On Chen ideal submanifolds satisfying some conditions of pseudo-symmetry type ⋮ Hypersurfaces in space forms satisfying some generalized Einstein metric condition ⋮ Curvature properties of anisotropic scale invariant metrics ⋮ Curvature properties of Morris-Thorne wormhole metric ⋮ Strongly minimal complex lightlike hypersurfaces ⋮ On hypersurfaces satisfying conditions determined by the Opozda–Verstraelen affine curvature tensor ⋮ On geodesic mappings in a particular class of Roter spaces
Cites Work
- Some pinching and classification theorems for minimal submanifolds
- Properties of a scalar curvature invariant depending on two planes
- Structure theorems on Riemannian spaces satisfying \(R(X,Y)\cdot R=0\). II. Global versions
- Einstein, conformally flat and semi-symmetric submanifolds satisfying Chen's equality
- Structure theorems on Riemannian spaces satisfying \(R(X,Y)\cdot R=0\). I: The local version
- GEOMETRIC EXPLANATION OF THE BELTRAMI THEOREM
- On some Akivis-Goldberg type metrics
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: On the Roter type of Chen ideal submanifolds