Global parametrices for the Schrödinger propagator and geometric approach to the Hamilton-Jacobi equation
DOI10.4171/RLM/585zbMath1219.35007arXiv1006.1753MaRDI QIDQ545893
Sandro Graffi, Lorenzo Zanelli
Publication date: 23 June 2011
Published in: Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Serie IX. Rendiconti Lincei. Matematica e Applicazioni (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1006.1753
Semiclassical techniques, including WKB and Maslov methods applied to problems in quantum theory (81Q20) Microlocal methods and methods of sheaf theory and homological algebra applied to PDEs (35A27) Hamilton-Jacobi equations in mechanics (70H20) Parametrices in context of PDEs (35A17) Fourier integral operators applied to PDEs (35S30) Time-dependent Schrödinger equations and Dirac equations (35Q41)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Smoothness and non-smoothness of the fundamental solution of time dependent Schrödinger equations
- Symplectic topology as the geometry of generating functions
- A mathematical justification for the Herman-Kluk propagator
- Persistance d'intersection avec la section nulle au cours d'une isotopie hamiltonienne dans un fibré cotangent
- On a nature of convergence of some Feynman path integrals. II
- Minimax and viscosity solutions of Hamilton-Jacobi equations in the convex case
- ON THE HERMAN–KLUK SEMICLASSICAL APPROXIMATION
- ON THE BEHAVIOR AT INFINITY OF THE FUNDAMENTAL SOLUTION OF TIME DEPENDENT SCHRÖDINGER EQUATION
- GLOBAL FOURIER INTEGRAL OPERATORS AND SEMICLASSICAL ASYMPTOTICS
- The global finite structure of generic envelope loci for Hamilton–Jacobi equations
- Periodic solutions of asymptotically linear Hamiltonian systems
- On the fundamental solution of semiclassical Schrödinger equations at resonant times