EXISTENCE AND BIFURCATION OF PERIODIC SOLUTIONS OF THREE-DIMENSIONAL DELAY DIFFERENTIAL EQUATIONS
From MaRDI portal
Publication:5474146
DOI10.1142/S0218127404011703zbMath1090.34585OpenAlexW2096088015MaRDI QIDQ5474146
Publication date: 23 June 2006
Published in: International Journal of Bifurcation and Chaos (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1142/s0218127404011703
Periodic solutions to functional-differential equations (34K13) Bifurcation theory of functional-differential equations (34K18)
Related Items (2)
Existence and bifurcation of periodic solutions of high-dimensional delay differential equations ⋮ On periodic motions in three-dimensional systems
Cites Work
- Ordinary differential equations which yield periodic solutions of differential delay equations
- On the nonlinear differential delay equation x'(t) = -f(x(t),x(t-1))
- An explicit expression of the first Lyapunov and period constants with applications
- Bifurcation of periodic solutions of delay differential equation with two delays.
- Bifurcations of periodic solutions of delay differential equations
- Proof and generalization of Kaplan-Yorke's conjecture under the condition \(F^{\prime}\) \((0) > 0\) on periodic solutions to differential delay equations
This page was built for publication: EXISTENCE AND BIFURCATION OF PERIODIC SOLUTIONS OF THREE-DIMENSIONAL DELAY DIFFERENTIAL EQUATIONS