On asymptotics of entropy of a class of analytic functions
DOI10.7169/facm/1308749134zbMath1218.28010OpenAlexW1966556923MaRDI QIDQ548517
Publication date: 29 June 2011
Published in: Functiones et Approximatio. Commentarii Mathematici (Search for Journal in Brave)
Full work available at URL: https://projecteuclid.org/euclid.facm/1308749134
spaces of analytic functionsBedford-Taylor capacity of a condenserentropy and widths asymptoticsKolmogorov problem
Entropy and other invariants (28D20) Riesz operators; eigenvalue distributions; approximation numbers, (s)-numbers, Kolmogorov numbers, entropy numbers, etc. of operators (47B06) Plurisubharmonic extremal functions, pluricomplex Green functions (32U35) Capacity theory and generalizations (32U20)
Related Items (5)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Extendible bases and Kolmogorov problem on asymptotics of entropy and widths of some class of analytic functions
- Proof of a conjecture of Zahariuta concerning a problem of Kolmogorov on the \(\epsilon\)-entropy
- A new capacity for plurisubharmonic functions
- The Dirichlet problem for a complex Monge-Ampère equation
- Sur une conjecture de Zahariuta et un problème de Kolmogorov
- APPROXIMATE DIMENSION AND BASES IN NUCLEAR SPACES
- Approximation of plurisubharmonic functions by multipole Green functions
This page was built for publication: On asymptotics of entropy of a class of analytic functions