On the nature of the Laplace-Beltrami operator on Lipschitz manifolds
From MaRDI portal
Publication:549438
DOI10.1007/s10958-010-0199-0zbMath1222.58020OpenAlexW2074735789MaRDI QIDQ549438
Dorina Mitrea, Irina Mitrea, Marius Mitrea, Friedrich Gesztesy
Publication date: 18 July 2011
Published in: Journal of Mathematical Sciences (New York) (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s10958-010-0199-0
Pseudodifferential operators as generalizations of partial differential operators (35S05) Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation (35J05) Pseudodifferential and Fourier integral operators on manifolds (58J40)
Related Items
Self-adjoint elliptic operators with boundary conditions on not closed hypersurfaces ⋮ M-dissipative boundary conditions and boundary tuples for Maxwell operators ⋮ Operator splitting for abstract Cauchy problems with dynamical boundary conditions ⋮ Well posedness for the Poisson problem on closed Lipschitz manifolds ⋮ An Interface Formulation of the Laplace–Beltrami Problem on Piecewise Smooth Surfaces ⋮ On the wave equation with hyperbolic dynamical boundary conditions, interior and boundary damping and source ⋮ The Hawking energy on the past lightcone in cosmology ⋮ A description of all self-adjoint extensions of the Laplacian and Kreĭn-type resolvent formulas on non-smooth domains ⋮ Self-adjoint extensions of the Laplace-Beltrami operator and unitaries at the boundary
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Harmonic analysis on semigroups
- The index of signature operators on Lipschitz manifolds
- The index theorem for topological manifolds
- Semigroups of linear operators and applications to partial differential equations
- Espaces d'interpolation et domaines de puissances fractionnaires d'opérateurs
- Fractional powers of dissipative operators. II
- Self-adjoint operators
- Harmonic measure on locally flat domains
- The inhomogeneous Dirichlet problem in Lipschitz domains
- The regularity of the Stokes operator and the Fujita-Kato approach to the Navier-Stokes initial value problem in Lipschitz domains
- Layer potentials, the Hodge Laplacian, and global boundary problems in nonsmooth Riemannian manifolds
- Steklov Eigenproblems and the Representation of Solutions of Elliptic Boundary Value Problems
- Spectral Characterization of the Trace Spaces ${H^s({\partial \Omega})}$
- Functions of Vanishing Mean Oscillation
- Extensions of Hardy spaces and their use in analysis
- Stability results on interpolation scales of quasi-Banach spaces and applications
- Generalized Robin Boundary Conditions, Robin-to-Dirichlet Maps, and Krein-Type Resolvent Formulas for Schr\"odinger Operators on Bounded Lipschitz Domains
- Topics in Harmonic Analysis Related to the Littlewood-Paley Theory. (AM-63)