Adiabatic almost-periodic Schrödinger operators
From MaRDI portal
Publication:549532
DOI10.1007/s10958-011-0252-7zbMath1237.34147OpenAlexW2066429044MaRDI QIDQ549532
Publication date: 18 July 2011
Published in: Journal of Mathematical Sciences (New York) (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s10958-011-0252-7
Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.) (34L40) General theory of ordinary differential operators (47E05)
Related Items (2)
Monodromization method in the theory of almost-periodic equations ⋮ On singularly perturbed linear cocycles over irrational rotations
Cites Work
- On the singular spectrum for adiabatic quasiperiodic Schrödinger operators
- On the singular spectrum for adiabatic quasi-periodic Schrödinger operators on the real line
- Localization for a class of one dimensional quasi-periodic Schrödinger operators
- Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d'un théorème d'Arnold et de Moser sur le tore de dimension 2
- Double wells
- Positive Lyapunov exponents for Schrödinger operators with quasi- periodic potentials
- Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation
- The spectrum of Hill's equation
- Anderson transitions for a family of almost periodic Schrödinger equations in the adiabatic case
- On the difference equations with periodic coefficients
- Effective masses and conformal mappings
- Metal-insulator transition for the almost Mathieu operator
- Strong resonant tunneling, level repulsion and spectral type for one-dimensional adiabatic quasi-periodic Schrödinger operators
- Weakly resonant tunneling interactions for adiabatic quasi-periodic Schrödinger operators
- A CHARACTERIZATION OF THE SPECTRUM OF HILL'S OPERATOR
- Level Repulsion and Spectral Type for One-Dimensional Adiabatic Quasi-Periodic Schrödinger Operators
- On the absolutely continuous spectrum of one-dimensional quasi-periodic Schrödinger operators in the adiabatic limit
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Adiabatic almost-periodic Schrödinger operators