NewLp-boundedness properties for the Kontorovich–Lebedev and Mehler–Fock transforms
DOI10.1080/10652469.2016.1221952zbMath1360.44005OpenAlexW2530947135MaRDI QIDQ5506802
Emilio R. Negrin, Benito J. González, Hari M. Srivastava
Publication date: 16 December 2016
Published in: Integral Transforms and Special Functions (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1080/10652469.2016.1221952
Hölder's inequalityKontorovich-Lebedev transformMehler-Fock transformassociated Legendre function\(L^p\)-boundedness propertiesmodified Bessel (or the Macdonald) function
Spaces of measurable functions ((L^p)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) (46E30) Special integral transforms (Legendre, Hilbert, etc.) (44A15)
Related Items (21)
Cites Work
- Unnamed Item
- On the least values of \(L_{p}\)-norms for the Kontorovich--Lebedev transform and its convolution
- On the Kontorovich-Lebedev transformation
- Boundedness properties for a class of integral operators including the index transforms and the operators with complex Gaussian kernels
- On the Mehler‐Fock Transform in Lp‐Space
- A family of Wiener transforms associated with a pair of operators on Hilbert space
- Analog of the Hausdorff–Young theorem for the Lebedev integral
This page was built for publication: NewLp-boundedness properties for the Kontorovich–Lebedev and Mehler–Fock transforms