Strong solutions for the incompressible fluid models of Korteweg type
From MaRDI portal
Publication:551370
DOI10.1016/S0252-9602(10)60079-3zbMath1228.76038OpenAlexW2016256458MaRDI QIDQ551370
Publication date: 19 July 2011
Published in: Acta Mathematica Scientia. Series B. (English Edition) (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/s0252-9602(10)60079-3
Navier-Stokes equations for incompressible viscous fluids (76D05) KdV equations (Korteweg-de Vries equations) (35Q53) Navier-Stokes equations (35Q30) Capillarity (surface tension) for incompressible viscous fluids (76D45) Existence, uniqueness, and regularity theory for incompressible viscous fluids (76D03)
Related Items (12)
Rayleigh-Taylor instability for viscous incompressible capillary fluids ⋮ A global existence result for Korteweg system in the critical \(L^P\) framework ⋮ Strong solutions to the Cauchy problem of two-dimensional incompressible fluid models of Korteweg type ⋮ A blow-up criterion for the strong solutions to the nonhomogeneous Navier-Stokes-Korteweg equations in dimension three. ⋮ Local existence and uniqueness of strong solutions to the density-dependent incompressible Navier-Stokes-Korteweg system ⋮ Lower bound of decay rate for higher-order derivatives of solution to the compressible fluid models of Korteweg type ⋮ Vanishing capillarity-viscosity limit for the incompressible inhomogeneous fluid models of Korteweg type ⋮ On the dynamic Rayleigh-Taylor instability in the Euler-Korteweg model ⋮ Stabilizing Effect of Capillarity in the Rayleigh–Taylor Problem to the Viscous Incompressible Capillary Fluids ⋮ On Rayleigh-Taylor instability in Navier-Stokes-Korteweg equations ⋮ Unique solvability for the density-dependent incompressible Navier-Stokes-Korteweg system ⋮ A blow-up criterion for the density-dependent Navier-Stokes-Korteweg equations in dimension two
This page was built for publication: Strong solutions for the incompressible fluid models of Korteweg type