Mathematical Research Data Initiative
Main page
Recent changes
Random page
Help about MediaWiki
Create a new Item
Create a new Property
Create a new EntitySchema
Merge two items
In other projects
Discussion
View source
View history
Purge
English
Log in

Fonctions al�atoires de deux variables presque surement a echantillons continus sur un domaine rectangulaire borne

From MaRDI portal
Publication:5524953
Jump to:navigation, search

DOI10.1007/BF00531803zbMath0147.15801MaRDI QIDQ5524953

Jean Delporte

Publication date: 1966

Published in: Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete (Search for Journal in Brave)


zbMATH Keywords

probability theory



Related Items (5)

Local maxima of the sample functions of the n-parameter Bessel process ⋮ Stetigkeitseigenschaften stochastischer Prozesse mit Parameter aus einem pseudometrischen Raum ⋮ On a problem posed by Orey and Pruitt related to the range of the N-parameter wiener process in R d ⋮ Monotonicity of certain functionals under rearrangement ⋮ The Hausdorff \(\alpha\)-dimensional measures of the level sets and the graph of the N-parameter Wiener process



Cites Work

  • Mesures de probabilité sur les espaces de Banach possédant une base dénombrable
  • Multiple Wiener integral
  • Gaussian Processes on Several Parameters
  • Random Fourier Transforms
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item


This page was built for publication: Fonctions al�atoires de deux variables presque surement a echantillons continus sur un domaine rectangulaire borne

Retrieved from "https://portal.mardi4nfdi.de/w/index.php?title=Publication:5524953&oldid=30110799"
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information
MaRDI portal item
This page was last edited on 7 March 2024, at 04:20.
Privacy policy
About MaRDI portal
Disclaimers
Imprint
Powered by MediaWiki