Maximum and Minimum First Eigenvalues for a Class of Elliptic Operators
From MaRDI portal
Publication:5528021
DOI10.2307/2036253zbMath0149.07601OpenAlexW4255061992MaRDI QIDQ5528021
Publication date: 1966
Full work available at URL: https://doi.org/10.2307/2036253
Related Items
Two remarks on Monge-Ampère equations ⋮ On a problem of Bieberbach and Rademacher ⋮ Robust maximization of asymptotic growth under covariance uncertainty ⋮ On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators ⋮ Unnamed Item ⋮ A family of degenerate elliptic operators: maximum principle and its consequences ⋮ Principal eigenvalues of fully nonlinear integro-differential elliptic equations with a drift term ⋮ Applications of Markov spectra for the weighted partition network by the substitution rule ⋮ Geometry of phase plane and radial solutions for nonlinear elliptic equations with extremal operators ⋮ Nonlinear eigenvalues and bifurcation problems for Pucci's operators ⋮ Principal eigenvalues of a class of nonlinear integro-differential operators ⋮ Operatori ellittice estremanti ⋮ Principal eigenvalues and an anti-maximum principle for homogeneous fully nonlinear elliptic equations ⋮ Existence and multiplicity for Hamilton-Jacobi-Bellman equation ⋮ Fundamental solutions and two properties of elliptic maximal and minimal operators ⋮ Eindeutigkeitssätze für die Dirichletsche Randwertaufgabe bei elliptisch-parabolischen Differentialgleichungen und untere Schranken für den kleinsten Eigenwert ⋮ Generalized principal eigenvalues of convex nonlinear elliptic operators in \(\mathbb{R}^N\)
Cites Work
This page was built for publication: Maximum and Minimum First Eigenvalues for a Class of Elliptic Operators