Soliton multidimensional equations and integrable evolutions preserving Laplace's equation
From MaRDI portal
Publication:552836
DOI10.1016/J.PHYSLETA.2007.09.037zbMath1217.35160OpenAlexW2147791877MaRDI QIDQ552836
Publication date: 26 July 2011
Published in: Physics Letters. A (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.physleta.2007.09.037
KdV equations (Korteweg-de Vries equations) (35Q53) Wave equation (35L05) Soliton equations (35Q51) General theory of infinite-dimensional dissipative dynamical systems, nonlinear semigroups, evolution equations (37L05)
Related Items (7)
Reduction in the \((4+1)\)-dimensional Fokas equation and their solutions ⋮ A novel \((2 + 1)\)-dimensional nonlinear Schrödinger equation deformed from \((1 + 1)\)-dimensional nonlinear Schrödinger equation ⋮ Davey-Stewartson type equations in 4+2 and 3+1 possessing soliton solutions ⋮ Complexification and integrability in multidimensions ⋮ Kadomtsev-Petviashvili Equation Revisited and Integrability in 4 + 2 and 3 + 1 ⋮ Linearisable nonlinear partial differential equations in multidimensions ⋮ Integrability of the modified generalised Vakhnenko equation
Cites Work
- Unnamed Item
- Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States
- Integrable Nonlinear Evolution Partial Differential Equations in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mn>4</mml:mn><mml:mo>+</mml:mo><mml:mn>2</mml:mn></mml:math>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mn>3</mml:mn><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:math>Dimensions
- On the Inverse Scattering of the Time-Dependent Schrödinger Equation and the Associated Kadomtsev-Petviashvili (I) Equation
- The Dbar formalism for certain linear non-homogeneous elliptic PDEs in two dimensions
- Method for Solving the Korteweg-deVries Equation
- A simple one‐dimensional model for the three‐dimensional vorticity equation
This page was built for publication: Soliton multidimensional equations and integrable evolutions preserving Laplace's equation