Generalized Feynman Amplitudes. (AM-62)

From MaRDI portal
Publication:5560220

DOI10.1515/9781400881864zbMath0172.27301OpenAlexW2560937511MaRDI QIDQ5560220

E. R. Spee

Publication date: 1969

Full work available at URL: https://doi.org/10.1515/9781400881864




Related Items

Feynman integrals and mirror symmetryPerturbative Renormalization by Flow EquationsUnnamed ItemTree quantum field theoryMacaulay matrix for Feynman integrals: linear relations and intersection numbersRestrictions of Pfaffian systems for Feynman integralsHepp's bound for Feynman graphs and matroidsAlgorithms for minimal Picard-Fuchs operators of Feynman integralsUnnamed ItemNonlocalities in field theoryCONTINUITY OF THE FOUR-POINT FUNCTION OF MASSIVE $\varphi_{4}^{4}$-THEORY ABOVE THRESHOLDFeynman integral relations from parametric annihilatorsMeromorphic continuation of Koba-Nielsen string amplitudesUnnamed ItemOn a conjecture of Regge and Sato on Feynman integralsRegularization of \(p\)-adic string amplitudes, and multivariate local zeta functionsDecomposition of Feynman integrals by multivariate intersection numbersOn the equivalence of additive and analytic renormalizationOne-Loop UV Divergent Structure of U(1) Yang-Mills Theory on Noncommutative<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>ℝ</mml:mi><mml:mrow><mml:msup><mml:mrow><mml:mi /></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>Analytic continuation of massless Feynman amplitudes in the Schwartz space \({\mathcal S}'\)On the structure of analytic renormalizationSimple approach to renormalization theoryHypergeometric series representations of Feynman integrals by GKZ hypergeometric systemsParamagnetic dominance, the sign of the beta function and UV/IR mixing in non-commutative U(1)ASYMPTOTIC INFRARED FRACTAL STRUCTURE OF THE PROPAGATOR FOR A CHARGED FERMIONTHE GLOBAL β-FUNCTIONS FROM SOLUTIONS OF DYSON–SCHWINGER EQUATIONSThe SAGEX review on scattering amplitudes Chapter 3: Mathematical structures in Feynman integrals