Classical and quantum fields in de Sitter space
From MaRDI portal
Publication:5573913
DOI10.1007/BF02721668zbMath0182.59703OpenAlexW107047307MaRDI QIDQ5573913
Gerhard Börner, Hans-Peter Dürr
Publication date: 1969
Published in: Il Nuovo Cimento A Series 10 (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/bf02721668
Related Items
Unnamed Item, Particle creation in global de Sitter space: Bulk space consideration, Unnamed Item, The discreet charm of the discrete series in dS2, Massive spin-2 propagators on de Sitter space, Applications of the tunneling method to particle decay and radiation from naked singularities, “Massive” vector field in de Sitter space, Unnamed Item, On exact solutions for quantum particles with spin \(S=0,1/2,1\) and de Sitter event horizon, de Sitter tachyons and related topics, Spin and torsion in general relativity. I: Foundations. II: Geometry and field equations, Conservation laws in de Sitter space from action principles in five- space, AdS geometry, projective embedded coordinates and associated isometry groups, Analytical solutions of the gravitational field equations in de Sitter and anti-de Sitter spacetimes, Perturbative quantum gravity and Newton's law on a flat Robertson-Walker background., Cosmological shapes of higher-spin gravity, ON THE REST AND FLAT LIMITS OF THE SCALAR MODES ON THE DE SITTER SPACETIME
Cites Work
- Master analytic representations and unified representation theory of certain orthogonal and pseudo-orthogonal groups
- Quantum theory in de-Sitter space
- Reformulation of general relativity in accordance with Mach's principle
- The electron wave equation in De-Sitter space
- On unitary representations of the group of de Sitter space
- Spinor Calculus in Riemannian Manifolds
- Continuous Degenerate Representations of Noncompact Rotation Groups. II
- Sur les représentations unitaires des groupes de Lorentz généralisés
- Représentations intégrables du groupe de De Sitter
- SPIN ½ WAVE EQUATION IN DE-SITTER SPACE
- Quantized Space-Time
- On Gauge Invariance and Vacuum Polarization